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Classical theorems on

hyperbolic triangles from a

projective point of view

Zoltán Szilasi

Abstract. Using the Cayley-Klein model of hyperbolic geometry and the tools of projec-
tive geometry, we present elementary proofs for the hyperbolic versions of some classical
theorems on triangles. We show, in particular, that hyperbolic triangles have no Euler
line.
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1. Introduction

In the training of the prospective mathematics teachers hyperbolic geometry

plays (or should play) an important role. Historically, it is a counterexample

for Euclidean geometry, and has an equally rich structure. This richness makes

hyperbolic geometry also an active area of contemporary mathematics. Peda-

gogically, it suggests very efficiently that mathematical thinking relies only on

axioms and deduction rules, and it is independent of what we see - sometimes it

contradicts our view.

It was a great challenge also for the greatest mathematicians to find out and

prove that the axiom of parallels is not necesserily true in the Euclidean way, and

a meaningful geometry can be built from its negation as well. For the students,

the Cayley-Klein model very convincingly demonstrates an absolute geometry

where the Euclidean axiom of parallels does not hold.

Copyright c© 2012 by University of Debrecen



“tmcs-szilasi” — 2012/3/1 — 0:14 — page 176 — #2

176 Zoltán Szilasi

In this paper we present an elementary exposition of some classical theorems

of hyperbolic geometry assuming a solid knowledge of projective geometry. It

turns out that in hyperbolic geometry a useful method of solving problems is to

translate them into the language of projective geometry. Our theorems also give

an opportunity for comparing Euclidean and hyperbolic geometry, since most of

them are true in the Euclidean plane as well, but our last theorem concerning the

Euler line indicates an interesting difference between Euclidean and hyperbolic

triangles.

2. Preliminaries

Let a nondegenerate conic be given in the real projective plane. We call

this conic the absolute conic. The inner points of the conic are called hyperbolic

points, and the subsets of the projective lines consisting of hyperbolic points

are the hyperbolic lines. The original projective line is called the projective line

corresponding to the hyperbolic line. Let the isometries be the restrictions of

the automorphisms of the given conic to the set of hyperbolic points. Thus we

obtain an absolute plane, called the Cayley-Klein plane. It can be shown that

every hyperbolic plane is isomorphic to the Cayley-Klein plane.

We say that a set of hyperbolic lines forms a pencil if the corresponding

projective lines are concurrent. If their common point is a hyperbolic point, then

the hyperbolic lines are concurrent. Otherwise, if their common point is on the

absolute conic, they are called asymptotically parallel lines, and if their common

point is an outer point of the absolute conic, they are called ultraparallel lines.

Concerning the preliminaries on projective geometry we refer to [2] or [4].

The following theorem of Chasles plays an important role in our considerations,

so we formulate it explicitly:

Theorem 1 (Chasles). Suppose that a triangle is different from the triangle

formed by the polars of its vertices with respect to a given conic (i.e. its polar

triangle). Then the triangle is perspective to its polar triangle.

Since the only involutory collineations of the real projective plane are the

harmonic homologies, and a harmonic homology is an automorphism of a given

conic if and only if its centre is the pole of its axis, it follows that the reflection

with respect to a hyperbolic line t is the restriction of the harmonic homology
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whose axis is the projective line corresponding t, and whose centre is the pole of

t with respect to the absolute conic.

Figure 1. Reflection with respect to t in the Cayley-Klein plane

Since a line is perpendicular to t if and only if it is a non-pointwise fixed

invariant line of the reflection with respect to t, the lines perpendicular to t

are just the lines whose corresponding projective lines pass through the pole of

t. This means that two hyperbolic lines are perpendicular if and only if their

corresponding projective lines are conjugate with respect to the absolute conic.

A point M is the midpoint of the segment AB if and only if there is a reflection

whose axis passes through M , and that sends A to B. Let the centre of the

harmonic homology corresponding to this reflection be M1. Then M and M1 are

conjugate with respect to the absolute conic and they are harmonic conjugate with

respect to A and B. This means that the quadruples (ABMM1) and (XY MM1),

where X and Y are the intersections of the absolute conic and the projective line

corresponding to
←−→
AB (i.e. the ends of

←−→
AB), are harmonic.

Using some elementary facts of projective geometry, the following observa-

tions can easily be proved. For every quadruple of distinct collinear points A, B,

X , Y , where (AB) does not seperate (XY ), there is exactly one pair of points

(M, M1) such that both (ABMM1) and (XY MM1) are harmonic. If A and B

are hyperbolic points, X and Y are the ends of
←−→
AB, then only one member of

the pair is inside the absolute conic. This point is the midpoint of the segment
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AB. The other point of the pair is called the outer point corresponding to the

midpoint.

3. Triangle geometry in the Cayley-Klein plane

In the following we are going to prove some famous theorems concerning the

geometry of hyperbolic triangles. Since every hyperbolic plane is isomorphic to

the Cayley-Klein plane, we may restrict ourselves to the Cayley-Klein plane.

Figure 2. The altitudes of a hyperbolic triangle form a pencil.

Theorem 2. The altitudes of every hyperbolic triangle form a pencil.

Proof. Let ABC be a hyperbolic triangle. Let the poles of the projective

lines corresponding to
←−→
BC,

←→
CA and

←−→
AB be A′, B′ and C ′, respectively. Then the

projective lines corresponding to the altitudes of ABC are
←−→
AA′,

←−→
BB′ and

←−→
CC ′.

By our construction the polar triangle of the projective triangle A′B′C ′ is ABC,
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and by the theorem of Chasles these triangles are perspective, therefore
←−→
AA′,

←−→
BB′

and
←−→
CC ′ are concurrent projective lines. �

The previous proof can be found in [2]. In the next theorems we use similar

techniques to deduce further important results. The key of our reasoning is the

following observation.

Key Lemma. The outer points corresponding to the midpoints of the sides

of a hyperbolic triangle are collinear.

Figure 3. The outer points corresponding to the midpoints of the sides
of a hyperbolic triangle are collinear.

Proof. Let the given hyperbolic triangle be ABC. Denote the midpoints of

its sides by A0, B0, C0, and the corresponding outer points by A1, B1, C1.

One of the diagonal points of the complete quadrangle C1B1B0C0 is A. The

other two diagonal points are incident to the line
←−→
BC, since (C0C1AB) and

(B0B1AC) are both harmonic tetrads. Let these diagonal points be {A′

0
} :=

←−−→
B0C1 ∩

←−−→
C0B1 and {A′

1
} :=

←−−→
B0C0 ∩

←−−→
B1C1. We prove that A′

0
and A′

1
are con-

jugate with respect to the absolute conic. From this our Lemma follows, since

by the harmonic property of the complete quadrangles A′

0
and A′

1
are harmonic

conjugates with respect to B and C, so in this case A′

0
= A0 and A′

1
= A1.
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We apply the theorem of Chasles to the triangle A′

0
B0C0. The polar of C0

intersects the line
←−−→
A′

0
B0 at C1, since C1 and C0 are conjugates with respect to

the absolute conic. The polar of B0 intersects the line
←−−→
A′

0
C0 at B1, since B1 and

B0 are also conjugates with respect to the absolute conic. This means that the

intersection of
←−−→
B0C0 and the polar of A′

0
must be on the line

←−−→
B1C1, so A′

1
is on

the polar of A′

0
. So it follows that A′

0
and A′

1
are conjugates with respect to the

absolute conic, as was to be shown. �

Theorem 3. The perpendicular bisectors of the sides of a hyperbolic triangle

form a pencil.

Proof. We use the notations of the previous Lemma. The perpendicular

bisectors of the sides of the triangle ABC are the polars of A1, B1 and C1.

Since A1, B1 and C1 are collinear, their polars are concurrent. This proves our

assertion. �

Theorem 4. The midlines of every hyperbolic triangle form a pencil.

Proof. Again, we use the notations of the Key Lemma. Since the trian-

gles ABC and A0B0C0 are axially perspective (with respect to the line passing

through A1, B1 and C1), by the theorem of Desargues they are also centrally

perspective. This means that the projective lines corresponding to the midlines

of any hyperbolic triangle are concurrent. �

As it is well-known, the previous theorems are true in Euclidean geometry

as well. In the Euclidean case the common points of altitudes, perpendicular

bisectors and midlines always exist; they are called orthocentre, circumcentre

and centroid, respectively. It is also true in the Euclidean geometry that these

points are collinear (if the points do not coincide), their common line is called

the Euler line of the triangle. Now we find, however, an essential difference

between the Euclidean and the hyperbolic case. In [3] J. R. Klus studied some

concrete examples and conjectured that in hyperbolic geometry the only triangles

with collinear orthocentre, circumcentre and centroid are the isosceles triangles.

Applying our methods, we prove this assertion, thus we give an essentially simpler

new proof of a theorem of R. Baldus [1].

Theorem 5. The orthocentre, circumcentre and centroid of a hyperbolic

triangle are collinear if and only if the triangle is isosceles.
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Proof. We keep our previous notations: the given triangle is ABC, the

midpoints of the corresponding sides are A0, B0 and C0, and the poles of the

projective lines corresponding to the sides are A′, B′ and C ′. Then the orthocentre

of the triangle is
←−→
AA′ ∩

←−→
BB′, the circumcentre is

←−−→
A0A

′ ∩
←−−→
B0B

′, and the centroid

is
←−→
AA0 ∩

←−−→
BB0. Suppose that the triangle ABC is not isosceles. Then A, A′, A0

and B, B′, B0 are not collinear triples of points. In this case, the orthocentre,

the circumcentre and the centroid are collinear if and only if the triangles AA′A0

and BB′B0 are axially perspective. By the theorem of Desargues, it holds if and

only if they are centrally perspective, i.e., if
←−→
AB,

←−−→
A′B′ and

←−−→
A0B0 are concurrent.

Here, by our Key Lemma,
←−→
AB∩

←−−→
A0B0 is C1, the outer point corresponding to the

midpoint C0. C0 is incident with
←−−→
A′B′ if and only if the polar of C0 is incident

with the intersection of the polars of A′ and B′. The latter point is C, while the

polar of C0 is the perpendicular bisector of AB. If C is on this line, then the

perpendicular bisector, the altitude and the midline corresponding to C coincide.

This contradicts our assumption that the triangle is not isosceles.

Conversely, if ABC is isosceles, and - for example - BC is the base of this

triangle, then
←−→
AA0 is the perpendicular bisector, altitude and midline of this tri-

angle at the same time. Thus the orthocentre, the circumcentre and the centroid

are incident with this line as well, so in this case the three points are collinear. �
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